MP2I - 2025/2026 Informatique - TP 16 - Retour sur trace 1/2

TP n°16 - Retour sur trace

1. Probléme des n reines

On rappelle que le probléme des n reines qui, pour un entier n > 0 donné, revient a placer n reines sur un échiquier
de n X n cases sans que les reines ne puissent s’attaquer mutuellement, conformément aux regles de déplacement
de cette piece aux échecs.

On représente les configurations par un tableau config de taille n. Pour tout i, config[i] est la colonne o1 on place
la reine sur la ligne i. Une configuration config est solution si :
Pour tous i, j € {0,...,n — 1},

(1)i '= j = config.(i) '= config.(j),

(2)i '= j = config.(i) + j '= config.(j) + i, et

(3)i !'= j = config.(i) - j != config.(j) - i.

1. Que testent les trois conditions pour i et j fixés?

On définit une configuration partielle comme étant une configuration ou seule les reines des ¢ premiéres lignes ont
été placées. Dans ce cas, on ignore les valeurs du tableau config d’indice supérieur a i. Une solution partielle est
une configuration partielle qui vérifie les conditions (1), (2) et (3).

2. Ecrire une fonction conflit : int -> int -> int -> int -> bool qui teste si deux reines peuvent s’attaquer
basé sur leurs lignes et colonnes.

3. Ecrire une fonction est_solution : int array -> bool qui teste si une configuration est une solution totale.

Pour pouvoir utiliser un algorithme exhaustif, il faut pouvoir énumérer les possibilités. On considére que[]0;0;...;0;01]
estla premieére configuration,[]0;0;...;0;1|]1a deuxiéme,[]0;0;...;0;n-1|]lan-iéme, lan+1-iemeest[10;0;...;1;01],
la n+2-iéme [[0;0;...;1;111, la 2n+1-iéme [|0;0;...;2;01], et [In-1;n-1;...;n-1;n-11|] est la dernieére.

4. Ecrire une fonction suivant : int array -> bool qui prend en entrée une configuration et modifie le tableau
pour qu’il contienne la configuration suivante. La fonction renvoie true si la configuration en entrée est la
derniére et false sinon.

5. En énumérant toutes les configurations (recherche exhaustive), écrire une fonction nb_solutions : int ->
int qui compte le nombre de solutions au probleme des n reines.
On ne dépassera pas n = 10 dans les tests pour le bien des ordinateurs.

On va maintenant utiliser le retour sur trace pour trouver plus vite. D’'une part on voudrait obtenir une solution,
et de 'autre, on veut compter le nombre de solutions, pour comparer la vitesse avec la question précédente.

6. Ecrire une fonction est_valide : int -> int array -> bool qui dit si la configuration partielle ou les i pre-
mieéres reines ont été placées dans le tableau est une solution partielle.

7. En utilisant le principe du retour sur trace et la fonction est_valide, écrire une fonction une_solution : int
-> int array qui renvoie la premiere solution qu’elle trouve.
Une aide est disponible pour cette question sous forme d’un code a remplir.

8. Adapter la fonction précédente en une fonction nb_solutions2 : int -> int qui compte le nombre de solu-

tions au probleme des n reines, toujours en suivant le principe du retour sur trace. Remarque : on a plus
besoin d’une exception.

Vous pouvez cherche pour quelle valeur de n on obtient la réponse en un temps raisonnable (moins d’'une
minute) et comparer avec la question 5.

2. Permutations

Le but de cette partie est de savoir générer les permutations de [|0,n — 1|].

Une permutation d’'un ensemble S est une maniére d’ordonner les éléments de S. Pour S = [|0, 2]], les permutations
sont (0, 1,2), (0,2,1), (1,0,2), (1,2,0), (2,1,0) et (2,0,1). Pour S = [|0,5]], (0,1,2,3,4,5) est une permutation,
tout comme (2, 3,5,1,0,4) ou (1,2,4,5,3,0).

On va représenter les permutations en Ocaml par des listes (pour faciliter la création, si on voulait faciliter 1'utili-
sation, on utiliserait des tableaux). Notre algorithme de création sera récursif.

On commence par écrire quelques fonctions utilitaires.

9. Ecrire une fonction remplace : int -> int -> int list -> int list qui prend en entrée un nombre a, un
nombre b et une liste /, et remplace chaque occurence de b par a dans la liste /.

MP2I - 2025/2026 Informatique - TP 16 - Retour sur trace 2/2

10. Ecrire une fonction remplace_iter : int -> int -> int list list -> int list list qui prend en entrée, a, b
et une liste de listes I/ et renvoie une liste de listes ou chaque liste de I/ a eu ses b remplacés par des a.

11. Ecrire une fonction tete_iter : int -> int list list -> int list list qui prend en entrée un nombre c et
une liste de listes I/ et rajoute un ¢ en téte de chaque liste contenue par //.

Maintenant, on remarque que pour faire une permutation s de [|0,n — 1|] on peut choisir un premier élément c
dans [|0, n — 1|] puis faire une permutation s’ de [|0,7 —2|] ol, sic # n — 1, on a remplacé ¢ par n — 1 dans s’. s est
alorsc :: s’

Pour créer toutes les permutations de [|0, n — 1|], on doit répéter ce processus avec tous les c et tous les s’ possibles.
Il est avantageux de ne calculer qu'une seule fois les permutations de [|0, n — 2|] (gain exponentiel de temps)

12. Ecrire une fonction permutations : int -> int list list qui prend en entrée n et renvoie la liste des permu-
tations de [|0,n — 1]].

